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We investigate the possibilities of a tight-binding ladder network as a mesoscopic switching device. Several
cases have been discussed in which any one or both arms of the ladder can assume random, ordered, or
quasiperiodic distribution of atomic potentials. We show that, for a special choice of the Hamiltonian param-
eters, it is possible to prove exactly the existence of mobility edges in such a system, which plays a central role
in the switching action. We also present numerical results for the two-terminal conductance of a general model
of a quasiperiodically grown ladder, which support the general features of the electron states in such a network.
The analysis might be helpful in fabricating mesoscopic or DNA switching devices.
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Understanding the character of single-particle states in
low-dimensional quantum systems has always been an inter-
esting problem in condensed-matter theory. It is well known
that in one dimension, irrespective of the strength of disor-
der, all the single particle states are exponentially
localized.1,2 Later, scaling arguments3 led to the result that all
states should be exponentially localized even in two dimen-
sions for arbitrarily weak disorder. Mobility edges separating
the extended �conducting� states from the localized �insulat-
ing� ones do not exist in one- or two-dimensional systems
with random disorder. Some exceptions to this “rule” have of
course been suggested in the past in a variation of the qua-
siperiodic Aubry-Andre model,4–9 and later, in the so-called
correlated disordered models in one dimension.10–13 How-
ever, an analytical proof of a metal-insulator transition �MIT�
is yet to be achieved in low dimensions.

In this Brief Report we investigate the electronic spectrum
of a two-chain ladder network within a tight-binding ap-
proximation for noninteracting electrons. This ladder net-
work is built by coupling two one-dimensional chains later-
ally �see Fig. 1�. The chains may or may not be identical and
are coupled to each other at every vertex through an inter-
chain hopping integral. The motivation behind the present
work is twofold. First, we wish to investigate if the quasi-
one-dimensional structure of the network, for a suitable com-
bination of the site potentials and the intersite hopping inte-
grals, leads to a possibility of observing a MIT. If it is true,
then a ladder network such as this could be used as a switch-
ing device, the design of which is of great concern in the
current era of nanofabrication. Second, the ladder networks
have recently become extremely important in the context of
understanding the charge transport in double stranded
DNA.14,15 The possibility of observing a localization-
delocalization transition in a DNA-like double chain has al-
ready been numerically addressed within a tight-binding
framework by Caetano and Schulz.16 In view of this, the
examination of the electronic spectrum of a ladder network
might throw a different perspective, both in the context of
basic physics and possible technological applications. It may
be mentioned that, in a recent paper,17 the present authors
proved the existence of a MIT in an aperiodic Aubry ladder
network. However, the results in that work strongly depend

on the dual symmetry exhibited by an Aubry model.4 As
such, in our mind, whether a MIT really exists for a general
disordered ladder still remains a challenging problem.

We adopt a tight-binding formalism and incorporate only
the nearest-neighbor hopping inside a plaquette of the ladder.
Interestingly, even for a disordered ladder, a certain correla-
tion between the system parameters allows us to perform an
exact analysis of the energy spectrum and make definite
comments on the character of the single-particle states. The
variation in the conductance of the network, which may even
exhibit a crossover from a completely opaque to a fully or
partly transmitting one, is easily understood. In view of such
a crossover one can then set the Fermi energy at a suitable
energy zone in the spectrum and control the transmission
characteristics. This enhances the prospect of such ladder
networks as switching devices. The possibility of designing
DNA devices, in our mind, can also be encouraged by such
analysis. Our results are exact. Finally, we present numerical
results for a quasiperiodically ordered ladder network by
evaluating the two-terminal conductance within a Green’s
function formalism. The conductance spectrum not only cor-
roborates the general features of disordered networks dis-
cussed previously and as revealed in our analytical approach
but also shows the presence of localization-delocalization
transition in the quasiperiodic ladder network. Again in this
case, analytical results may be obtained by appropriately ad-
justing the system parameters.

Let us refer to Fig. 1. The Hamiltonian of the ladder net-
work is given by

H = �
n

�ncn
†cn + t�

n

cn
†cn+1 + H.c., �1�

where
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FIG. 1. �Color online� Schematic of a ladder attached to two
electrodes.
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cn = �cn,1

cn,2
� . �2�

In the above, cn,j �cn,j
† � is the annihilation �creation� operator

at the nth site of the jth ladder.

�n = ��n,1 �n

�n �n,2
� ,

t = � t 0

0 t
� , �3�

where �n,j is the on-site potential at the nth site of the jth
ladder, �n is the vertical hopping between the nth sites of the
two arms of the ladder, and t is the nearest-neighbor hopping
integral between the nth and the �n+1�th sites of every arm.

We describe the system in a basis defined by the vector

fn = � fn,1

fn,2
� , �4�

where fn,j is the amplitude of the wave function at the nth
site of the jth arm of the ladder with j being equal to one or
two. Using this basis, our task is to obtain solutions of the
difference equation,

�EI − �n�fn = t�fn+1 + fn−1� , �5�

with I being the 2�2 identity matrix. Let us now separately
discuss cases that will throw light on the central problem
addressed in this paper, viz., the possibility of getting a
localization-delocalization transition in such a system.

In case I, �n,2=��n,1 and �n=��n,1. We introduce the
above correlation between the on-site potentials at each arm.
The selection of �n,1 is of course done in a random manner.
With this choice of parameters, the difference �Eq. �5�� reads

�EI − �n,1M�fn = tI�fn+1 + fn−1� , �6�

where

M = �1 �

� �
� . �7�

We now diagonalize the matrix M by a similarity trans-
formation using matrix S and define

�n = S−1fn. �8�

The above difference �Eq. �6�� now decouples, in this new
basis, in the following pair of equations:

�E − �1�n,1��m,1 = t��n+1,1 + �n−1,1� , �9�

and

�E − �2�n,1��n,2 = t��n+1,2 + �n−1,2� . �10�

Here, �n,1 and �n,2 are the elements of the column vector �n,
and �1 and �2 are the eigenvalues of the matrix M, which are
given by

�1 =
1 + �

2
+ ��� 1−�

2 �2 + �2� ,

�2 =
1 + �

2
− ��� 1−�

2 �2 + �2� . �11�

We can now extract information about the nature of eigen-
functions of the original ladder network in different paramet-
ric and energy spaces by considering the two Eqs. �9� and
�10� simultaneously. First of all, for any fixed value of �, the
set of Eqs. �9� and �10� together defines a ladder network
consisting of random on-site potentials occupying the arms 1
and 2. As both these equations represent randomly disor-
dered one-dimensional chains, one expects Anderson local-
ization of all the electronic states provided �1 and �2 are
nonzero. The states of the ladder network will be exponen-
tially localized. However, there is a point of interest.

It is well known that, for a randomly disordered chain of
length L with L�1 but not very large, one encounters a
distribution of localization lengths. The distribution is char-
acterized by “local” Lyapunov exponents, which can be dif-
ferent for different eigenstates of the disordered sample.18

Only in the thermodynamic limit one single exponent domi-
nates the distribution and one can talk of a “unique” charac-
teristic localization length. In the case of a ladder of large but
finite length, Eqs. �9� and �10� represent chains having two
different widths of disorder and, hence, two different distri-
butions of localization lengths. One can, however, simulate
the thermodynamic limit by averaging over various disorder
configurations. As a result of such averaging the “distribu-
tion” of localization lengths will be dominated by one
Lyapunov exponent, and we can talk of a characteristic lo-
calization length of the disordered sample. Assuming that
this is done, Eqs. �9� and �10� will represent chains with two
different �characteristic� lengths of localization.

Let 	1 and 	2 be these characteristic localization lengths
corresponding to Eqs. �9� and �10�, respectively, and let us
set, without any loss of generality, 	1
L
	2. As the Fermi
energy is swept through the eigenvalue spectrum correspond-
ing to Eq. �9�, the ladder does not conduct, as L�	1. On the
other hand, as the Fermi energy coincides with any of the
eigenvalues corresponding to the spectrum provided by Eq.
�10�, the ladder shows a finite conductance. Thus, the finite
ladder exhibits a transition from a nonconducting to a con-
ducting phase and thus shows a switchlike behavior. Of
course, the value of the conductance in the second case may
not always be high.

In case II, �n,1 are random, �n,2=��n,1, and �n=��n,1, such
that �2=0. This implies that �n=���n,1�n,2�. For this special
choice of the parameters, Eqs. �9� and �10� read

�E − ��n,1 + �n,2���n,1 = t��n+1,1 + �n−1,1� , �12�

and

E�n,2 = t��n+1,2 + �n−1,2� . �13�

This is an interesting case. Equation �12� represents the ei-
genvalue equation for a disordered chain with �n,1 being un-
correlated random potentials. Therefore, the electronic states

BRIEF REPORTS PHYSICAL REVIEW B 78, 113103 �2008�

113103-2



represented by �n,1 are exponentially localized. On the other
hand, Eq. �13� represents a perfectly ordered chain with on-
site potential being equal to zero at each site. All the eigen-
states represented by �n,2 are extended and the system rep-
resented by the set of Eqs. �13� has an absolutely continuous
energy spectrum ranging from E=−2t to E=2t in the ther-
modynamic limit. This implies that, in the actual system, all
the states beyond 	E	=2t will be localized exponentially
�courtesy of Eq. �12�� and we get mobility edges at E
= �2t. This presents an example where the existence of mo-
bility edges can be proven analytically in a low-dimensional
disordered system such as a two-chain ladder discussed here.

In case III, let us now discuss a quasiperiodic version of
the ladder, viz., a Fibonacci ladder. Each arm of the ladder is
a quasiperiodic Fibonacci chain.19 A binary Fibonacci chain
is composed of two “letters” A and B, and the consecutive
Fibonacci generations are grown following the substitution
rules, A→AB and B→A with A as the seed.19 The on-site
potentials now assume values �A,j and �B,j for an A-type or a
B-type vertex in the ladder with j being the arm index. The
variety of vertices makes the interladder hopping �n take up
values �A or �B, depending on whether it connects the A
−A or the B−B vertices in the ladder in the transverse direc-
tion �Fig. 2�.

We first discuss a special case again, in the spirit of our
earlier case I. We choose �=0 and �n=��n,1. It implies that
�n,2=��n,1=0, but the ladder still retains its quasiperiodic Fi-
bonacci character. Equations �9� and �10� retain their forms
but now with �1= �1+�1+4�2� /2 and �2= �1−�1+4�2� /2.
As �n,1 is taken to be distributed in a Fibonacci sequence
along arm number one of the ladder, each of Eqs. �9� and
�10� represents equations for two independent Fibonacci
chains. The eigenstates for each of them are typically
critical,19 exhibiting power-law localization with a multifrac-
tal distribution of the exponents. Thus, the spectrum of the
Fibonacci ladder will be composed only of such critical
states and no question of localization-delocalization transi-
tion arises.

Now, as a second case, we select �A,2=�A,1 and, �B,2

=�B,1, �A=���A,1�A,2�=�A,1 and �B=���B,1�B,2�=�B,1, which
automatically makes �=1 and �=1. The same set of Eqs.
�12� and �13� is obtained. Now, �n,1+�n,2 is either 2�A or 2�B.
That is, Eq. �12� represents a one-dimensional Fibonacci
chain for all the single-particle states are critical19 and the
spectrum in the thermodynamic limit is a Cantor set with a
gap in the neighborhood of every energy. The central part of
the spectrum, of course, remains extended by virtue of Eq.
�13�, referring to a perfectly ordered chain of atoms. Thus we
again come across mobility edges beyond 	E	=2t but now it
is a transition from extended to critical �power-law localized�

states. The conductance accordingly drops from �relatively�
high to low values as one crosses such mobility edges.

For a Fibonacci chain without the above restrictive values
of the parameters, we have to resort to numerical methods.
Without any specified correlation between the on-site poten-
tials in the arms or in the values of the interarm hopping �,
the decoupling of the ladder network into two independent
one-dimensional chains is not possible �this is, of course,
true even with the disordered ladder�. However, the analysis
made so far does not rule out the possibility of a metal-
insulator transition even in a general case. As an example,
we have performed a numerical calculation of the density of
states  and conductance g of a finite Fibonacci ladder. Re-
sults for two separate cases are shown in Fig. 3. In the first
case, one arm is an ordered chain while the other arm has a
quasiperiodic Fibonacci distribution of the on-site potentials.
In the second case, both the arms have a Fibonacci character.

For the numerical calculation we have adopted the
Green’s function formalism. A finite ladder is attached to two
semi-infinite one-dimensional perfect electrodes, viz., source
and drain, described by the standard tight-binding Hamil-
tonian, and parametrized by constant on-site potential �0 and
nearest-neighbor hopping integral t0 �already illustrated in
Fig. 1�. For low bias voltage and temperature, the conduc-
tance g of the ladder is determined by the single-channel
Landauer conductance formula20 g= �2e2 /h�T. The transmis-
sion probability T is given by20 T=Tr��SGL

r �DGL
a�. �S and

�D correspond to the imaginary parts of the self-energies due
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t

n-1,2 n,2 n+1,2
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FIG. 2. �Color online� Schematic of a ladder attached to two
electrodes where each arm of the ladder is a Fibonacci chain.
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FIG. 3. �Color online� g-E �red/gray� and -E �blue/dark gray�
curves for a ladder of total number of rungs 34. �a� One chain
�chain number 2� is ordered with on-site potential set equal to unity,
and the other chain �chain number 1� is subjected to Fibonacci
modulation in site energies with �A,1=−4 and �B,1=4. �b� Both the
chains are subjected to Fibonacci modulation in site energies with
�A,1=�A,2=−4 and �B,1=�B,2=4. Other parameters are t=3 and �
=3, and the on-site potential and the hopping integral in the elec-
trodes are set as �0=0 and t0=4, respectively. We have chosen c
=e=h=1.
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to coupling of the ladder with the two electrodes, and GL
represents the Green’s function of the ladder.21–23

In Fig. 3 we have superposed the picture of the density of
states on the conductance profile to show clearly that we
have eigenstates existing in energy regimes for which the
conductance is very low. This illustrates the transition from
the conducting �high g� to nonconducting phase.

In conclusion, the results presented in this Brief Report
are worked out for zero temperature. However, they should

remain valid even in a certain range of finite temperatures
�
300 K�. This is because the broadening of the energy
levels of the ladder due to the electrode-ladder coupling is, in
general, much larger than that of the thermal broadening.20

The interladder hopping � shifts the spectra corresponding to
Eqs. �12� and �13� relative to each other. As a result, in
principle, one can tune the positions of the mobility edges.
This aspect may be inspiring in designing low-dimensional
switching devices or even a DNA device.
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